A Unicon Benchmark Suite

Shea Newton and Clinton Jeffery

Unicon Technical Report: 16a
June 9, 2014

Abstract

A benchmark suite was used to demonstrate the performance of various Icon
language features on systems and compilers of the late 1980’s. For Unicon, the
addition of various language features combined with generations of processor
improvements motivated the development of a new benchmark suite. This docu-
ment describes updates to the existing Icon benchmark suite for use in Unicon as
well as additional benchmarking programs that serve to better analyze Unicon’s
performance on today’s machines.

Unicon Project
http://unicon.org

University of Idaho

Department of Computer Science
Moscow, ID, 83844, USA

1 Introduction

This technical report describes a benchmark suite for the Unicon language, called the Unicon
12 Benchmark Suite. The Unicon 12 benchmarks include revisions of the Icon benchmark
suite as well as new benchmarks that measure the performance of additional language fea-
tures. In addition to enabling the comparison of different platforms and different Unicon
implementations, several multi-language benchmarks enable comparison of Unicon’s perfor-
mance to other languages implementing the same algorithms.

For this project, the Icon benchmark suite was modified in order to increase compu-
tation time. These modifications include either larger data sets, an increased number of
calculations or more results generated from existing calculations. Additions to the Icon
suite include programs developed for the Computer Language Benchmarks Game found at
http://benchmarksgame.alioth.debian.org/. These programs allow comparison
between similar algorithms implemented in a wide range of languages and on various machine
architectures.

2 DModifications to the Existing Icon Benchmark Suite

Included in the Unicon Version 12.1 source distribution are five Icon benchmarks in the
directory tests/bench/icon. These tests were used to compare different platforms for
running Icon in the late 1980’s. Figure 1 describes these programs and their runtimes as the
average of three executions, on a dual core machine running 64-bit Linux Mint 12 with an
AMD Opteron 2212 2.0 GHz processor and 8 GB of RAM. These times were measured with
the Unicon keyword &time, which measures CPU time with a clock resolution of 1ms on
typical Linux Unicon platforms.

The modifications necessary to increase the run-times of these programs were slight,
generally increasing n, where n is the number of outcomes generated or simply providing
larger data sets for those programs that used input files. As can be seen from Figure 1, on
modern processors the original Icon benchmarks that used to take many seconds now have
runtimes small enough that even a 1ms resolution may introduce significant errors in the
measurements. These modified benchmarks are available from Unicon.orgl

http://benchmarksgame.alioth.debian.org/
Unicon.org

Benchmark: Description Run- | Changes Extended
Features times Run-
Represented times
concord: Produces concordance | 157ms| The original 447 line Unix Pro- | 11.351s
strings, lists | from standard input to grammer’s Manual input was re-
standard output where placed with a 4719 line .txt ver-
words less than three sion of Dostoevsky’s, Notes from
characters long are ig- the Underground
nored.
deal: strings, | Deals bridge hands. 140ms| The number of hands dealt was | 7.421s
lists increased from 1 to 50,000.
ipxref: Produces a cross reference | 43ms | ipxref originally cross-referenced | 6.309s
strings, lists, | for Icon programs. [2] itself, 239 lines, but inputs
records and 50,687 lines of source code[3].
tables
queens: Generates solutions to | 197ms| Now implements a larger n, | 11.593s
recursion, the n-queens problem. where n is the number of queens
backtracking | Program does generation, for which to generate a solution.
backtracking and text N was changed from 6 to 12.
synthesis. [2]
rsg: strings, | Generates randomly se- | 190ms| Originally generated 1000 sen- | 7.276s
lists lected sentences from a tences, this number was changed
grammar. [2] in order to generate 50,000 sen-
tences.

Figure 1: Existing Icon Benchmark Suite, modifications and performance on a modern
machine.

3 Additions to the Existing Suite

A major shortcoming of the Icon benchmark suite is that it did not cover many of the
important language features that defined Icon. The Icon benchmarks deliberately avoided
I/O and traditional numeric processing; their failure to emphasize other language features
was unintentional. In any case, in order to overcome this issue, the Unicon benchmark suite
needs to expand in order to account for Unicon and Icon’s feature set. Ideally, the Unicon
benchmark suite will eventually include coverage of the following:

o integer, real, and arbitrary precision arithmetic
programmer-defined generators, suspension, and backtracking
tables / sets
threads
object construction, field access, method invocation
2D and 3D graphics
TCP and UDP network communication
DBM and ODBC databases

Due to time and resource limitations, the Unicon 12 benchmark suite omits I/O bench-
marking, but addresses the first four of these areas using algorithms developed for the
Computer Language Benchmark Game found at http://benchmarksgame.alioth.

O O 0O O O O O

http://benchmarksgame.alioth.debian.org

debian.org. The advantage of these algorithms is that their performance on various

machines and their implementations in various languages is well documented and timed.
Figure 2 describes the programs that make up the Computer Language Benchmarks Game

[1]. The source code for Unicon versions of these programs are included in the appendix of

this report, and available from Unicon.org.

Benchmark| Description Features Repre- | N
sented

n-body performs an N-body simulation of the Jo- | real numbers, | 50,000,000
vian planets records

fannkuch- | repeatedly accesses a tiny integer-sequence | integers, lists 12

redux

meteor- searches for solutions to a shape packing | integers, records 2098

contest puzzle

fasta generates and writes random DNA se- | records, lists, strings, | 25,000,000
quences suspend, generators

spectral- calculates an eigenvalue using the power | real numbers, lists 5,500

norm method

reverse- reads DNA sequences and writes their | strings, lists 25,000,000

complement] reverse-complement

mandelbrot| generates a Mandelbrot set and writes a | integers, threads 16,000
portable bitmap

k- repeatedly updates hash-tables and k- | strings, lists 25,000,000

nucleotide | nucleotide strings

regex-dna | matches DNA 8-mers and substitutes nu- | records, strings, | 5,000,000
cleotides for TUB code threads

pidigits calculates the digits of Pi with streaming | arbitrary precision | 10,000
arbitrary-precision arithmetic integers

chameneos-| repeatedly performs symmetrical thread | threads, records 6,000,000

redux rendezvous requests

thread- repeatedly switches from thread to thread | threads 50,000,000

ring passing one token

binary- allocates and deallocates many binary trees | integers, lists, | 20

trees threads

Figure 2: Descriptions of the programs that comprise the Computer Language Benchmarks

Game.

4 Benchmark Game Results

Preliminary results for the implemented benchmarks follow, along with the performance of
similar algorithms implemented in Python and C. Timings for the Unicon programs were
calculated as real/wall clock time using Unicon’s gettimeofday() and CPU time using the
Unicon keyword &time. Unicon’s &time keyword has a 1ms resolution, while the gettime-
ofday() calculates timing with a resolution of 1ps. For these tables, gettimeofday() results
have been rounded to the nearest millisecond. Python and C timings were calculated using
Linux’s time (1) utility where the CPU time reported below is the sum of the reported
user and system time.

http://benchmarksgame.alioth.debian.org
http://benchmarksgame.alioth.debian.org
Unicon.org

The times presented here represent the average runtime of over three executions on a
32 core machine running 64-bit Fedora 16 with an AMD Opteron 6272 2.1 GHz processor
and 32 GB of RAM. Unicon was compiled with —02 optimization and concurrency enabled.
The C and Python results are presumably for carefully tuned, near optimal solutions, while
the Unicon times are based on somewhat untuned translations of the C and Python solu-
tions. For instance, due to the efficiency of string scanning in Icon and Unicon, there has
been very little work done to optimize regular expression functionality. At this point, the
benchmarks show Unicon to be 1.6x-334x slower than C, and 1x faster to 30x slower than
Python. Unicon’s optimizing compiler, invoked via unicon -C and commonly referred to
as Uniconc, performs remarkably well. When it is enabled in Unicon source distributions
(via make Uniconc after the VM build is performed via make Unicon), Uniconc demonstrates
execution times 1.6x faster to 60x slower than C and 11x faster to 6.2x slower than Python.

Additional benchmarks, tuning, and updated numbers will increase the usefulness of
the information, and identify opportunities for language implementation improvements. For
example, one of the Python benchmarks depends on installation of a C library (GMP) that
appears to outperform Unicon’s arbitrary precision integer implementation.

Benchmark C Python | Unicon Uniconc
n-body 10.318s 136x 345.2x 57.9x
fannkuch-redux | 65.245s 61.5x 199.7x 20.3x
meteor-contest 0.188s 100.6x 98.9x 9.1x
fasta 8.195s 45.1x 70.4x 10.2x
spectral-norm 37.929s 37.6x 58.4x 7.2x
reverse- 1.583s 6.5x 10.4x 4.1x
complement

mandelbrot 49.677s 1.3x 8.1x 8.1x
k-nucleotide 9.413s 64.8x 180.9x 55.4x
regex-dna 21.228s 1.3x 1.7x 0.6x
pidigits 2.491s 1x 8.6x 3.1x
chameneos- 2.083s 211.2x 334x N/A
redux

(thread specific)

thread-ring Tm:32.017s | 1.4x 1.6x N/A
(thread specific)

binary-trees 22.408s 2.1x 62.2x 11.6x

Figure 3: Execution times for the Computer Language Shootout Game benchmarks expressed
as ratios of C program execution times.

5 Future Work

In order to answer the question of how Unicon performs on various operating systems and
architectures, the Unicon project is soliciting the community of Unicon users to record and
report results on diverse platforms. A similar approach was taken for Icon in the 1980’s
with a table of user-reported benchmark results published in the Icon Newsletter #31[2].
Obtaining end user participation depends on an end product that is both easy for users to
run, and easy for them to report their results. The Unicon 12 Benchmark Suite aims to meet

this end and includes multiple scripts and logging tools. Scripts included in the package are
designed to allow users to log results for multiple run-times estimated at 15 minutes, 1 hour,
and 20 hours to run to completion. Details about these tools can be found in Appendix A
or the README file in test /bench.

There remains the work of developing further benchmarks for the suite in order for it to
address Unicon’s feature set comprehensively. Those benchmarks should include programs
covering object construction, field access, method invocation, 2D and 3D graphics, TCP and
UDP network communication, and DBM and ODBC databases.

6 Conclusions

The Unicon 12 benchmark suite serves a variety of purposes. It was motivated by a need
to compare Unicon’s speed on different operating systems and CPU types. In addition it
allows comparison of different Unicon implementations.

Future revisions to the Unicon 12 suite might not include all the original Icon bench-
marks, since they are somewhat redundant. Similarly, not all the language benchmark game
benchmarks might be necessary, since some of them are redundant with each other or with
Icon benchmarks.

In terms of language coverage, there remains the work of developing further benchmarks
for the suite in order for it to address Unicon’s feature set comprehensively. Those bench-
marks should include programs covering object construction, field access, method invoca-
tion, 2D and 3D graphics, TCP and UDP network communication, and DBM and ODBC
databases.

References

[1] B. Fulgham and I. Gouy. The Compter Language Benchmarks Game, Retrieved April
14, 2014 from http://benchmarksgame.alioth.debian.org/\

[2] R. Griswold. Icon benchmarks. The Icon Newsletter, (31):6-8, September 1989. Univer-
sity of Arizona.

[3] C. Jeffery and D. Rice. sesrit.icn, January 1999. Retrieved April 14, 2014 from http:
//www2.cs.uidaho.edu/~Jjeffery/courses/game/sesrit.icn.

Appendix A: README

Unicon 12 Benchmark Suite

Requirements for Windows: At least sh.exe and make.exe on the
path. You may need the MinGW package.

http://benchmarksgame.alioth.debian.org/
http://www2.cs.uidaho.edu/~jeffery/courses/game/sesrit.icn
http://www2.cs.uidaho.edu/~jeffery/courses/game/sesrit.icn

Linux systems should be fine.
Some of these benchmarks require that Unicon has concurrency enabled.

To check if Unicon has concurrency enabled, type "unicon —-features" on
the command line and check for concurrent threads listed as a feature.

If you’ve built Unicon from sources, concurrency may be enabled by
un—-commenting the line "#define Concurrent 1" in the file define.h
located in /src/h/ in your Unicon directory.

In this zip, four automated Unicon versions of the Computer Language
Benchmark Game’s programs may be run using the Unicon scripts
"run-test," "run-short," "run-med" and "run-shootout." The intricacies
of these scripts are detailed below.

Instructions for building and running the benchmarks included in this
zip file:

1. After unzipping the folder, run the make command to build independent
executables, .u files for the automated scripts, and the .dat files
required for k-nucleotide, regex-dna and reverse-complement.

2. Once built, the script executables run-test and run-shootout may be
run in two ways:

[A] One option is to run a script with no arguments
(e.g., ./run—-test or ./run-benchmark), in order
to run each benchmark in succession with output suppressed.

[B] The second option is to run the script with the name of
the benchmark you’d like to run (listed below) as the script’s
argument (e.g., ./run—-test binary-trees or
./run—-shootout meteor—-contest, in order to run that specific
benchmark with output suppressed.

3. Aside from the scripts, ideally the make command will build
independent executables that may be run on their own in order to
see output or to set your own input values. These executables do not
have timing mechanisms built into them.

4. The included makefile has rules for each benchmark and script so
you should be able to make each independently if desired.

Generating Input Files

A file fasta.c was included in order to quickly generate the input
.dat files. If there is no C compiler present you may opt to generate
all input files with a Unicon program when prompted after running make
or you may generate them incrementally. Using Unicon to generate input
files can take some time so if you’d like to generate input
incrementally, you may specify which version or versions of the
benchmarks to generate input files for using the generate program
included in this package.

Examples would be:

./generate test

or

./generate benchmark

or

./generate test benchmark med
to generate a few at a time

Running the benchmarks

The data at below represents input values required for a short Unicon
benchmark run and a full "benchmark shootout game website approved
run." Also included are the input values for testing and for an
alternate version of the benchmarks adjusted in order to achieve,
hopefully, meaningful results without requiring an entire 20+ hour
run.

Approximate time takes to run each version of this benchmark suite:

run—-test: 20 seconds
run-benchmark: 5 minutes
run-shootout: 20 hours
run-med: 1 hour

Testing Purposes: run-test
concord concord.test

deal 500

ipxref ipxref.test

queens 9

rsg rsg.test

binary-trees: 10
chameneos—-redux: 600

fannkuch: 7

fasta: 1000

k-nucleotide: fasta output 25,000
mandelbrot: 200

meteor—-contest: 1

n-body: 1000

pidigits: 500

regex—dna: fasta output 10,000
reverse—-complement: fasta output 150000
spectral-norm: 100

thread-ring: 1000

Standard Unicon 12 Benchmark Run: run-benchmark
concord concord.dat

deal 50000

ipxref ipxref.dat

queens 12

rsg rsg.dat

binary-trees: 14

chameneos-redux: 65,000

fannkuch: 9

fasta: 250000

k-nucleotide: fasta output 150,000
mandelbrot: 750

meteor—-contest: 600

n-body: 10,0000

pidigits: 7,000

regex—-dna: fasta output 700,000
reverse—-complement: fasta output 15,000,000
spectral-norm: 300

thread-ring: 700,000

Full Benchmark Shootout Game Run: run-shootout
binary-trees: 20

chameneos-redux: 6,000,000

fannkuch: 12

fasta: 25,000,000

k-nucleotide: fasta output 25,000,000
mandelbrot: 16,000

meteor—-contest: 2098

n-body: 50,000,000

pidigits: 10,000

regex—dna: fasta output 5,000,000

reverse-complement: fasta output 25,000,000
spectral-norm: 5,500
thread-ring: 50,000,000

Alternate "n" Benchmark Shootout Game Run: run-med
binary-trees: 17

chameneos-redux: 1,500,000

fannkuch: 10

fasta: 7,000,000

k—-nucleotide: fasta output 3,000,000
mandelbrot: 3,500

meteor—-contest: 2,098

n-body: 1,500,000

pidigits: 10,000

regex—dna: fasta output 5,000,000
reverse-complement: fasta output 25,000,000
spectral-norm: 1,300

thread-ring: 15,000,000

Appendix B: Source

The following is source code for the Unicon programs translated from algorithms written for
the Computer Language Benchmark Game.[1]

n-body.icn

The Computer Language Benchmarks Game
http://benchmarksgame.alioth.debian.org/

Translated from Kevin Carson, Tupteq, Fredrick Johansson,
Daniel Nanz and Maciej Fijalkowski’s Python program

HH o o H W

link printf
global PI, SOLAR_MASS, DAYS_PER_YEAR, BODIES, SYSTEM, PAIRS
procedure combinations (L)
result := []
every put (result, [L[x := 1 to L], L[x+1l to *L]])
return result
end

record xyz(x,y,z)

procedure advance (dt, n)

every i := 1 to n do {
every p := !PAIRS do {
pl := pll]
pll := pl[1l]
vl := pl[2]
p2 := p[2]
p2l := p2[1]
v2 = p2[2]
dx := pll.x - p2l.x

dy pll.y - p2l.y
dz := pll.z - p2l.z
mag := dt * ((dx * dx + dy = dy + dz * dz) =~ -1.5)
blm := pl[3] * mag
b2m := p2[3] * mag

vli.x —:= dx * b2m
vli.y —:= dy x b2m
vl.z —:= dz » b2m
v2.x +:= dx * blm
v2.y +:= dy * blm
v2.z +:= dz * blm

}

every s := !SYSTEM do {

r := s[1]

v = s[2]

r(l] +:=dt * v.x
r[{2] +:=dt » v.y
r(3] +:=dt * v.z

end

procedure report_energy ()

local e := 0.0, pl
every p := !PAIRS do {
pl := p[1l]
pll := pl[1l]
p2 := p[2]
p2l := p2[1]
dx := pll.x p2l.x
dy := pll.y - p2l.y
dz := pll.z p2l.z
e —:= pl[3] * p2[3] / ((dx * dx + dy * dy + dz dz) ~ 0.5)

}

every b := !SYSTEM do {
v = b[2]

10

e +:=

}

b[3] *

fprintf (output,
end

"$.9r\n",

e)

procedure offset_momentum (ref)

local px := 0, py := 0, pz := 0.0
every s := !SYSTEM do ({
v = s[2]
m := s[3]
pPX —:= V.X % m
py —:= v.y * m
pz —:= V.z % m
}
v = ref[2]
m := ref[3]
vV.x := px / m
v.y = py / m
v.z :=pz / m

end

procedure run_nbody (argv)
local ref := "sun"

(V.x * V.X + V.y * Vv.y + v.z x v.z) / 2.

PI := 3.14159265358979323
SOLAR_MASS := 4 x PI » PI
DAYS_PER_YEAR := 365.24
BODIES := table(
n sun " ,
[xyz (0.0, 0.0, 0.0), xyz(0.0, 0.0, 0.0),
"Jupiter",

[xyz(4.84143144246472090e+00,
-1.16032004402742839e+00,
-1.03622044471123109e-01),

xyz(1.66007664274403694e-03 * DAYS_PER_YEAR,
7.69901118419740425e-03 * DAYS_PER_YEAR,
-6.90460016972063023e-05 » DAYS_PER_YEAR),
9.54791938424326609e-04 x SOLAR_MASS],
"saturn",
[xyz (8.34336671824457987e+00,
4.12479856412430479e+00,
-4.03523417114321381e-01),
xyz (=2.76742510726862411e-03 x DAYS_PER_YEAR,
4.99852801234917238e-03 » DAYS_PER_YEAR,
2.30417297573763929e-05 % DAYS_PER_YEAR),
2.85885980666130812e-04 » SOLAR_MASS],
"uranus",

[xyz(1.28943695621391310e+01,
-1.51111514016986312e+01,
-2.23307578892655734e-01),

xyz (2.96460137564761618e-03 x DAYS_PER_YEAR,
2.37847173959480950e-03 » DAYS_PER_YEAR,
-2.96589568540237556e-05 » DAYS_PER_YEAR),
4.36624404335156298e-05 » SOLAR_MASS],
"neptune",
[xyz(1.53796971148509165e+01,
-2.59193146099879641e+01,
1.79258772950371181e-01),
xyz (2.68067772490389322e-03 * DAYS_PER_YEAR,
1.62824170038242295e-03 * DAYS_PER_YEAR,
-9.51592254519715870e-05 = DAYS_PER_YEAR),
5.15138902046611451e-05 * SOLAR_MASS]
)
SYSTEM := []

every put (SYSTEM,
PAIRS :=

'BODIES)
combinations (SYSTEM)

11

SOLAR_MASS],

offset_momentum (BODIES [ref])
report_energy ()
advance (0.01, argv([1l])
report_energy ()

end

$ifdef MAIN
procedure main (argv)

output := &output
run_nbody (argv)
end
Sendif

12

fannkuch.icn

The Computer Language Benchmarks Game
http://benchmarksgame.alioth.debian.org/
Translated from Isaac Gouy, Buck Golemon
and Justin Peel’s Python program

HH o H H o 3

procedure fannkuch (n)

maxFlipsCount := checksum := 0
permSign := 1

perml := list (n)

every perml[i := 1 to n] := i-1
count := copy (perml)

repeat {

k := perml[1]
if k "= 0 then {
perm := copy (perml)
flipsCount := 1
kk := perm[k + 1]
while kk "= 0 do {
reverse elements 1..k+1
top := k+2
every 1 := 1 to (k+1)/2 do
perm[i] :=: perm[top-i]
flipsCount +:= 1
k = kk

kk := perm[kk+1]
}
if maxFlipsCount < flipsCount then {
maxFlipsCount := flipsCount
}
if permSign = 1 then {

checksum +:= flipsCount
}

else {
checksum -:= flipsCount

}
}

generate another permutation via incremental change

flag :=1
if permSign = 1 then {
perml[1l] :=: perml[2]
permSign := 0
}
else {
perml[2] :=: perml[3]
permSign := 1
every r := 3 ton - 1 do {
if count[r] "= 0 then {
flag := 0
break
}
count [r] := r-1

perm0 := pop (perml)
insert (perml, r + 1, perm0)
}
if flag = 1 then {
r :=n
if count[r] = 0 then {
write (output, checksum)
return maxFlipsCount
}
}
count [r] -:=1

}

end

13

procedure run_fannkuch (av)

n := integer(avi[l])

write (output, "Pfannkuchen(", n, ") = ", fannkuch(n))
end

$ifdef MAIN
procedure main (av)

output := &output
run_fannkuch (av)
end
Sendif

14

meteor-contest.icn

The Computer Language Benchmarks Game
http://shootout.alioth.debian.org/
Translated from Olof Kraigher’s
Python program

H H o S

global width, height, masksAtCell
global solutions, masks, directions
global rotate, flip, moves, pieces

record xy(x, V)

procedure findFreeCell (board)

bitposn := 1
every y := 0 to height - 1 do {
every x := 0 to width - 1 do {
if iand(board, bitposn) = 0 then
return xy(x, V)
bitposn := ishift (bitposn, 1)
}
}
end

procedure floodFill (board, coords)
local bitposn

X := coords.x
y := coords.y
bitposn := ishift (1, x + width x y)
if (not wvalid(x,y)) | (iand(board, bitposn) "= 0) then
return board
board := ior (board, bitposn)
every board := ior(board, floodFill (board, (!moves) (x, Vy)))
return board
end

procedure nolIslands (mask)

zeroes := zerocount (mask)

if zeroes < 5 then fail

while mask "= 16r3FFFFFFFFFFFF do {
mask := floodFill (mask, findFreeCell (mask))
new_zeroes := zerocount (mask)
if (zeroes - new_zeroes) < 5 then fail
zZeroes := new_zeroes
}

return

end

procedure getBitmask (x,y,piece)

mask := ishift (1, (x + widthxy))
every cell := !piece do {
results := moves[cell] (x,V)
X := results.x
y := results.y
if (0 <= x < width) & (0 <= y < height) then # valid
mask := ior (mask, ishift(l, (x + widthxy)))
else {
fail

}
}
return mask
end

procedure allBitmasks (piece, color)
bitmasks := []

15

every !2 do {

every rotations := 1
to (6 — 3%x(if color = 4 then 1 else 0)) do {
every y := 0 to height - 1 do {
every x := 0 to width - 1 do {
if noIslands (mask := getBitmask(x, y, piece))
then {

put (bitmasks, mask)
}

}
every piece[cell := 1 to xpiece] := rotate[piece[celll]]
}
every piece[cell := 1 to *piece] := flip[piece[cell]]
}
return bitmasks
end

procedure generateBitmasks ()

local color := 0
every piece := !pieces do {
m := sort(allBitmasks (piece, color))
cellMask := ishift(l, (widthxheight-1))
cellCounter := widthxheight - 1
j = xm
while j > 0 do {
if iand(m[j], cellMask) = cellMask then {
put (masksAtCell[cellCounter + 1, color+l], m[7])
Jo-:=1
}
else {
cellMask := ishift (cellMask, -1)
cellCounter —-:=1
}
}
color +:= 1

end
procedure solveCell (cell, board, n)

if xsolutions >= n then {
return
}
if board = 16r3FFFFFFFFFFFF then {

s := stringOfMasks (masks)
put (solutions, s, s) # inverse(s))
return
}

if iand(board, ishift(l, cell)) "= 0 then {
solveCell (cell-1, board, n)
return

}
if cell < 0 then {
return
}
every color := 1 to 10 do {
if masks[color] = 0 then {
every mask := !masksAtCell[cell + 1, color] do {
if iand(mask, board)=0 then { # legal
masks|[color] := mask
solveCell (cell-1, ior (board, mask), n)
masks[color] := 0

}

16

end

procedure solve (n)
generateBitmasks ()
solveCell (widthxheight-1, 0, n)
end

procedure stringOfMasks (masks)
s = "n

mask :=1

every 'height do {

every !width do {

every color := 0 to 9 do {
if iand(masks[color+1l], mask) "= 0 then {
s ||:= color
break
}
else if color = 9 then
s |]z="."
}
mask := ishift (mask, 1)

}
}
return s
end

procedure inverse (s)

ns := s
write (output, image(s))
every x := 0 to width - 1 do

every y := 0 to height - 1 do {

ns[(x + yxwidth) + 1] :=
s[(width-x-1 + (width - y - 1)*width) + 1]

}
return s
end

procedure printSolution (solution)
every y := 0 to height - 1 do {

every x := 0 to width - 1 do
writes (output, solution[(x + yxwidth) + 1], " ")

if (y%2) = 0 then {
write (output,)
writes (output, " ")
}

else
write (output,)

end

procedure valid(x, V)
return (0 <= x < width) & (0 <= y < height)
end

procedure legal (mask, board)
return iand(mask, board) = 0
end

procedure zerocount (mask)
static zeros_in_4bits
local sum := -2
initial zeros_in_4bits :=

4’ 37 3/ 2/ 3’
2, 2, 1, 3, 2,
2, 1, 2, 1, 1,0

17

]

every x := 0 to 48 by 4 do {

sum +:= zeros_in_4bits|

1 + ishift (iand(ishift (15,x), mask),-x)
]

}

return sum
end

procedure move_E (x, vy)
return xy(x+1, vy)

end

procedure move_W(x, y)
return xy(x-1,y)

end

procedure move_NE (x, V)
return xy (x+(y%2), y-1)

end

procedure move_NW (x, Vy)
return xy (x+(y%2)-1, y-1)

end

procedure move_SE (x, y)
return xy (x+(y%2), y+1)

end

procedure move_SW(x, y)
return xy (x+(y%2)-1, y+1)

end

procedure run_meteorcontest (argv)

if xargv < 1 then stop("usage: meteor-contest num")

width := 5
height := 10
directions :=
table (
"Ell, O,
"NE", 1,
"Nwll, 2’
"W"I 3’
"Sw", 4,
"SE", 5
)
rotate := table(
"E"’ "NE",
"NE n , "Nwll ,
"NWw", "w",
"Wll, "SW",
"SW", "SE",
"SEII, "EH
)
flip := table(
IIE", “W",
"NE", "NW",
"NW" , IINE n ,
"w", "E",
"SW", "SE",
"SE", "SwW"
)
moves := table(
"E", move_E,
"W", move_W,
"NE", move_NE,
"NW", move_NW,
"SE", move_SE,
"SW", move_SW
)
pieces := [

18

["E", "E", "E", "SE"],
[llSE", IISW"’ "W"’ "SW"] ,
["W", "W, "SW", "SE"],
["E", "E"’ "Sw"’ "SE"] ,
[llNWII, IIWII, "Nw", "SEII, "SW"] ,
["E", T"E", "NE", "W"],
[llNW", IINE", "NE", "Wll] ,
["NE", "SE", "E", "NE"],
["SE", IISE", "E"’ HSE"] ,
["E", "NW", "NW", "NW"]
]

solutions := []

masks := list (10, 0)

masksAtCell := list(width % height)
every !masksAtCell := [[], [], [1, [, (],

solve (argv[1])

(1,

write (output, =xsolutions, " solutions found\n")

printSolution (min(solutions))
write (output,)
printSolution (max (solutions))
write (output,)

end

Sifdef MAIN
procedure main (argv)

output := &output
run_meteorcontest (argv)
end
Sendif

19

fasta.icn

The Computer Language Benchmarks Game
http://benchmarksgame.alioth.debian.org/
Translated from Ian Osgood and

Henrich Acher’s Python program

H H o S

procedure genRandom ()
static ia, ic, im, imf, seed
initial {

ia := 3877

ic := 29573

im := 139968

seed := 42

imf := real (im)

}
seed := (seed * ia + ic) % im
return seed / imf

end

procedure makeCumulative (genelist)
local P := [], C := [], prob := 0.0
every i := !genelist do {
prob +:= i.p
put (P, prob)
put (C, i.c)
}
return [P, C]
end

procedure repeatFasta(src, n)

width := 60

r := *src

s := src || src || src[l : n % r + 1]

every j := 0 to integer(n / width)-1 do {
i := 3 % width $ r

write (output, s[i + 1 +: width])
}

if n % width "= 0 then
write (output, s[-(n % width) : 0])
end

procedure randomFasta (genelist, n)
local width := 60
local results := makeCumulative (genelist)
probs results[1]
chars := results[2]
every 0 to integer(n / width)-1 do {

X =
every 1 to width do

x |]:= chars[bisect (probs, genRandom())]

write (output, x)
}
if n % width "= 0 then {

g = nn
every 1 to n$%$width do

y | |:= chars[bisect (probs, genRandom())]

write (output, y)
}

end

procedure bisect (L, x)
i =1
while L[i] < x do i +:=1
return i

end

20

record aminoacids (p, c)

procedure run_fasta (argv)

alu := "GGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGG_
GAGGCCGAGGCGGGCGGATCACCTGAGGTCAGGAGTTCGAGA
CCAGCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAAT
ACAAAAATTAGCCGGGCGTGGTGGCGCGCGCCTGTAATCCCA_
GCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGG_
AGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCC_
AGCCTGGGCGACAGAGCGAGACTCCGTCTCAAARA"

iub := [aminoacids(0.27, "a"),
aminoacids (0.12, "c"),
aminoacids (0.12, "g"),
aminoacids (0.27, "t"),
aminoacids (0.02, "B"),
aminoacids (0.02, "D"),
aminoacids (0.02, "H"),
aminoacids (0.02, "K"),
aminoacids (0.02, "M"),
aminoacids (0.02, "N"),
aminoacids (0.02, "R"),
aminoacids (0.02, "s"),
aminoacids (0.02, "v"),
aminoacids (0.02, "w"),
aminoacids (0.02, "Y")]
homosapiens := [
aminoacids (0.3029549426680, "a"),
aminoacids (0.1979883004921, "c"),
aminoacids (0.1975473066391, "g"),
aminoacids (0.3015094502008, "t")
]
n := integer (argv([1l])

write (output, ">ONE Homo sapiens alu")
repeatFasta (alu, n=*2)
write (output, ">TWO IUB ambiguity codes")
randomFasta (iub, n=3)
write (output, ">THREE Homo sapiens frequency")
randomFasta (homosapiens, nx5)

end

$ifdef MAIN
procedure main (argv)

output := &output
run_fasta (argv)
end
Sendif

21

spectral-norm.icn

The Computer Language Benchmarks Game
http://benchmarksgame.alioth.debian.org/

Translated from Sebastien Loisel, Isaac Gouy, Simon
Descarpentries and Vadim Zelenin’s Python program

HH o o H W

procedure eval_A (i, 3J)
return 1.0 / ((ishift((i + J) = (i + 3 + 1), -1) + i + 1))
end

procedure eval A_times_u (u, resulted_list)

u_len := xu

every i := 0 to u_len - 1 do {
partial_sum := 0
every J := 0 to u_len - 1 do {

partial_sum +:= eval_A(i, J) * ulj + 1]
}

resulted_list[i + 1] := partial_sum

}

end

procedure eval_ At_times_u (u, resulted_list)

u_len := *u

every i := 0 to u_len - 1 do {
partial_sum := 0
every J := 0 to u_len - 1 do {

partial_sum +:= eval_A (j, i) * ul[j + 1]
}
resulted_list[i + 1] := partial_sum

}

end

procedure eval_AtA_times_u (u, out, tmp)
eval_A_times_u (u, tmp)
eval_At_times_u (tmp, out)

end

procedure run_spectralnorm(av)

n := integer(avi[l])
u := list(n, 1.0)
v := list(n, 1.0)
tmp := list(n, 1.0)

every 1 to 10 do {
eval_ AtA_times_u (u, v, tmp)
eval_ AtA_times_u (v, u, tmp)

vBv := vv := 0

every i := 1 to n do {
vi = v[i]
vBv +:= ul[i] * vi
vv +:= vi * vi

}

write (output, sqgrt (vBv/vv))
end

$ifdef MAIN

procedure main (av)
output := &output
run_spectralnorm(av)

22

end
Sendif

23

reverse-complement.icn
#
The Computer Language Benchmarks Game
http://shootout.alioth.debian.org/
Translated from Jacob Lee, Steven Bethard,
Daniele Varrazzo and Daniel Nanz’s
Python program
procedure mapseq(str)
head :=""
ns . nn
H := []
M := []
chars := &letters ++ > '
str ? {
while tab (upto(chars)) do {
if ¢ := move(l) == ">" then {
if xhead > 0 then {
put (M, ns)
ns = nn
}
head := tab (many (chars))
head := ¢ || head
put (H, head)
}
else {
ns ||:= tab(many (chars))
}
}
put (M, ns)
}
every i := 1 to *M do {
M[i] := reverse (map (M[i],

"ACBDGHKMNSRUTVYacbdghkmnsrutwvy",
"TGVHCDMKNSYAABRTGVHCDMKNSYAAWBR")
)

}
return [H, M]
end

procedure run_reversecomplement (argv)

fin := open(argv[l])

str := reads(fin, stat(argv[l]) .size)
L := mapseq(str)

i =1

while 1 < 4 do {
write (output, L[1,i])
Li2, il 2 {
while write (output, move (60))
s := tab(0)
if s > 0 then
write (output, s)

end

$ifdef MAIN
procedure main (argv)

output := &output
run_reversecomplement (argv)
end
Sendif

24

mandelbrot.icn

The Computer Language Benchmarks Game
http://benchmarksgame.alioth.debian.org/
Translated from Greg Buchholz’s C program

HH = H H

global w, h, wr, hr
Sdefine iter 50
Sdefine limit 2.0

procedure do_y (y)
local bit_num, byte_acc, x, Z%Zr, Zi, Cr, Ci, Tr, Ti, i, rv
bit_num := byte_acc := 0

rv = "n

Ci := (2.0xy/hr - 1.0)
every x := 0 to w-1 do {
Zr := Zi := Tr := Ti := 0.0
Cr := (2.0%x/wr - 1.5)
every i := 0 to iter-1 do {
if Tr+Ti > 4.0 then break
zZi := 2.0 x Zr %= Zi + Ci
zr Tr - Ti + Cr
Tr := Zr * Zr
Ti := zZi * Zi
}

byte_acc := ishift (byte_acc, 1)

if Tr+Ti <= 4.0 then {
byte_acc := ior (byte_acc, 1)
}

bit_num +:= 1

if bit_num = 8 then {

rv || := char (byte_acc)
byte_acc := bit_num := 0
}
}
if bit_num "= 0 then {
byte_acc := ishift (byte_acc, abs (8-w%8)
rv ||:= char (byte_acc)
byte_acc := bit_num := 0

}
return rv
end

procedure run_mandelbrot (argv)
local y, i, pool

pool := Pool (64)

wL := list ()

rL := list ()

w := h := integer (argv[l])

wr := hr := real (w)

write (output, "P4\n", w, " ", h)

every i := 0 to h-1 do
put (wL, 1)

rL := pool.imap (do_y, wL)

pool.kill ()

every i 'rL do

writes (output, i)
end

$ifdef MAIN
procedure main (argv)

25

output := &output
run_mandelbrot (argv)
end
Sendif

26

k-nucleotide.icn

The Computer Language Shootout
http://shootout.alioth.debian.org/
Translated from Ian Osgood,
Sokolov Yura and bearophile’s
Python program

HH o o H W

link printf, sort

procedure gen_freqg(sequ, frame)
ns := xsequ + 1 - frame
frequences := table (0)
every ii := 1 to ns do {
nucleo := sequfii:iit+frame]
if member (frequences, nucleo) then
frequences[nucleo] +:= 1
else
frequences[nucleo] := 1
}
return [ns, frequences]
end

procedure rev (L)
i = *L
temp := []
while i > 0 dof
put (temp, L[i])
i -:=1
}
return temp
end

procedure sort_sequ(sequ, length)
local results, 1, reverse

results := gen_freqg(sequ, length)
n := results[1l]
frequences := results[2]
1 := sort (frequences, 2)
1l := sortff(l, 2, 1)
1l := rev(l)
every pair := !1 do {
st := pair[l]; fr := pair([2];

fprintf (output, "%$s %.3r\n", st, 100.0xfr/n)

}
write (output,)
end

procedure find_sequ(sequ, s)
local results := []

results := gen_freqg(sequ, =*s)
n := results[1l]
t := results[2]

fprintf (output, "%d\t%s\n", t[s], s)
end

procedure run_knucleotide (argv)

fin := open(argv[l])

se = [
"GGT", "GGTA", "GGTATT",
"GGTATTTTAATT", "GGTATTTTAATTTATAGT"
]

while line := read(fin) do {

if line[1:4] == ">TH" then
break

27

sequ :=

while line := read(fin) do
sequ | |:= line

sequence := map (sequ, &lcase,

every nl := 1 to 2 do
sort_sequ (sequence, nl)

every s := !se do

find_sequ (sequence,
end

Sifdef MAIN

procedure main (argv)
output := &output
run_knucleotide (argv)

end

Sendif

s)

&ucase)

28

#regex—-dna.icn

#

The Computer Language Benchmarks Game
http://shootout.alioth.debian.org/

link findre, pool
global variants, subst, sequ

record sp(f, r)

procedure do_trim()

outs := ""
sequ ? {
while outs ||:= tab(findp()) & mark := __endpoint do {
tab (mark)
}
outs ||:= sequl&pos:0]

}
return copy (outs)
end

procedure do_variants (e)

i = e[2] (sequ)

return e[1] || " " || 1
end

procedure do_subst ()
every e := !subst do ({
outs := ""
sequ ? {
while outs ||:= tab(find(e.f)) do {
outs ||:= e.r
move (1)
}
outs ||:= sequ[&pos:0]
}
sequ := copy (outs)
}

return sequ

end
#
The initial pattern p was ">+[A-Za-z]*\n+|\n+"
The findre() api calls for us to set __endpoint to the position
after the match.
#
procedure findp(p, subj:&subject, il:&pos, 1i2:0)
alphaspace := &letters ++ 7 '
every 1 := upto(’>\n’,subj,il,i2) do {
case subj[i] of {
ll>": {
i3 := many(’'>’, subj, i, 12)
i3 := many (alphaspace, subj, 13, i2)
if not i3 := many(’'\n’, subj, i3, i2) then {
next
}
__endpoint := i3
}
ll\nll: {
i3 := many(’'\n’, subj, i, 1i2)
__endpoint := i3

}

suspend i

}

end

29

#
generate all the positions in s at which this pattern matches, in order
#

agggtaaaltttaccct

procedure var_1(s)

local 1 := 0
s ? { every find("agggtaaa"|"tttaccct") do i +:= 1 }
return i

end

"l[cgtlgggtaaaltttaccclacg]l",
procedure var_2(s)

local 1 := 0
s ? {
every tab (upto(’cgt’)+1l) & ="gggtaaa" do i +:=1
&pos := 1
every tab(find("tttaccc")+7) & tab(any(’acg’)) do i +:= 1

return i

}

end

"alactlggtaaaltttacclagt]t",
procedure var_3(s)

local i := 0

s ? |
every tab(find("a")+1l) & tab(any(’act’)) & ="ggtaaa" do i +:=1
&pos := 1
every tab (find("tttacc")+6) & tab(any(’agt’)) & ="t" do i +:=1
return i
}

end

"aglactlgtaaaltttaclagt]ct",

procedure var_4(s)

local 1 := 0

s ? {
every tab(find("ag")+2) & tab(any(’act’)) & ="gtaaa" do i +:= 1
&pos := 1
every tab (find("tttac")+5) & tab(any(’agt’)) & ="ct" do i +:=1
return i
}

end

"agglact]ltaaaltttalagt]lcct",

procedure var_5(s)

local 1 =0

s ? {
every tab(find("agg")+3) & tab(any('act’)) & ="taaa" do i +:=1
&pos :=1

every tab (find("ttta")+4) & tab(any(’agt’)) & ="cct" do i +:=1
return i

}

end

"aggglacglaaalttt[cgt]lccect",
procedure var_6(s)

local 1 := 0

s ? |
every tab(find("aggg")+4) & tab(any(’acg’)) & ="aaa" do i +:=1
&pos :=1

every tab (find("ttt")+3) & tab(any(‘cgt’)) & ="ccct" do i +:=1
return i

}

end

30

M"agggtlcgtlaalttl[acglaccct",
procedure var_7(s)

local i := 0

s ? {
every tab(find("agggt")+5) & tab(any(’cgt’)) & ="aa" do i +:
&pos :=1

every tab (find("tt")+2) & tab(any(’acg’)) & ="accct" do i +:
return i
}

end

"agggtalcgtlaltlacg]ltaccct",
procedure var_8(s)

local 1 := 0

s ? |
every tab(find("agggta")+6) & tab(any(’cgt’)) & ="a" do i +:
&pos :=1

every tab (find("t")+1) & tab(any(’acg’)) & ="taccct" do i +:
return i
}

end

"agggtaalcgt] | [acg]lttaccct"
procedure var_9(s)

local i := 0

s ? |
every tab (find("agggtaa")+7) & tab(any(’cgt’)) do i +:=1
&pos := 1

every tab (upto(’acg’)+1l) & ="ttaccct" do i +:=1
return i

}

end

procedure run_regexdna (av)

fin := open(av([l]) | stop("usage: regex—-dna filename")
siz := stat(av[l]).size | stop("can’t stat ", av[l])
sequ := reads(fin, siz) | stop("can’t read ", av[l])
pool := Pool (9)
p := ">+[A-Za-z]*\n+|\n+t"
ilen := xsequ
outs := ""
sequ ? {
while outs |]:= tab(findp()) & mark := __endpoint do {
tab (mark)
}
outs ||:= sequl&pos:0]
}
sequ := copy (outs)
clen := *sequ
variants := [["agggtaaal|tttaccct", var_1],

["[cgtlgggtaaaltttaccclacgl", var_2]
["alact]ggtaaaltttacclagt]t", var_3]
["ag[act]lgtaaaltttaclagt]ct", var_4],
["agglact]ltaaaltttalagt]cct", var_5],
]
]
]
]

’

’

["aggglacglaaalttt[cgt]lccect", var_6
["agggt [cgtlaaltt[acglaccct", var_7
["agggtalcgt]lalt[acgltaccct", var_8
["agggtaalcgt] | [acg]ttaccct™, var_9
]
subst := [sp("B", "(clglt)"),
sp("D", "(alglt)"),

"H", "(alclt)"),
"K“, "(glt)ﬂ),
IIMII, ll(alc)"),
"N", "(alclglt)"),

’
’

’

sp (
sp(
sp (
sp(

31

sp("R", "(alg)"),
sp("s", "(clg)"),
sp("v", "(alclg)"),
sp("w", "(alt)"),
Sp("Y", Il(clt)")
]
wL = []
every e := !variants do put (wL, e)
rL := pool.imap(do_variants, wL)
pool.kill ()
every write (output, !rL)
every e := !subst do {
outs := ""
sequ ? {
while outs ||:= tab(find(e.f)) do
outs ||:= e.r
move (1)
}
outs ||:= sequl[&pos:0]
}
sequ := copy (outs)

write (output, "\n", ilen)
write (output, clen)
write (output, =*sequ)

end

$ifdef MAIN
procedure main (av)

output := &output
run_regexdna (av)
end
Sendif

32

pidigits.

http://be
Translate

HH = H H

link printf

procedure r
N := int

i =k

k1l :=n
repeat {

k +:=

t =

end

$ifdef MAIN

procedure m
output
run_pidi

end

Sendif

icn

The Computer Language Benchmarks Game

nchmarksgame.alioth.debian.org/
d from Mario Pernici’s Python program

un_pidigits (av)
eger (avi[l])

:=ns :=a :=t :=u :=0

i=d =1

1
ishift (n, 1)

d > u then {
ns :=ns x 10 + t
i +:=1
if 1 $ 10 = 0 then {
fprintf (output, "%$010d\t:%d\n", ns, 1)
ns := 0
}
else if 1 >= N then {
fprintf (output, "$-10dxx\t:%d\n", ns, 1)
break
}
a = (a - dx t) x 10
n x:= 10
}

ain (av)

1= &output

gits (av)

33

chameneos-redux.icn

The Computer Language Benchmarks Game
http://shootout.alioth.debian.org/
Translated from Daniel Nanz’s

Python program

H H o S

global creature_colors, compl_dict, in_lock,
procedure complement (cl, c2)
if cl c2 then return cl
if ¢l == "blue" then {
if c2 "red" then return
return "red"
}
cl
if c2
return
}
if c2
return
end

n

yellow"

if == "red" then {
"blue" then return "yellow"

"Hlue"

"blue "
"blue"

then return "red"

procedure check_complement ()
every cl !creature_colors do
every c2 !creature_colors do
write (output, cl1, " + ", c2,
write (output,)
end

"o o

procedure spellout (n)
numbers ["zero",
"five" ,

"two", "three",

"seven",

"one",
"SiX",
= n "

s

every c

s ||:

return s
end

do

I'string (n)
numbers [c+1]

procedure report (input_zoo, self_met)

s :=m m
every J 'input_zoo do
s H::j II non
write (output, s)
every 1 1 to *met do
write (output, met[i],
0
every 1 +:= !met
write (output, spellout (i),
end

met,

i

"\l’l")

procedure creature (my_id, my_lock, in_lock,
repeat {
lock_acquire (my_lock)
lock_acquire (in_lock)
critical venue: venue[l]
lock_release (out_lock)

}

my_id

end

procedure lock_object ()
repeat {
@>>
<<@
}

end

"eight ",

out_lock, wvenue

compl_dict([cl] |c2])

"four",
"nine"]

spellout (self_met[i]))

out_lock)

34

procedure lock_release(T)
@>>T

end

procedure lock_acquire (T)
<<@T

end

procedure let_them_meet (meetings_left, input_zoo)

local c_no, met, self_met, colors, my_locks

c_no := xinput_zoo

met := list (c_no, 0)

self_met := list(c_no, 0)

colors := copy (input_zoo)
my_locks := []

in_lock := thread lock_object ()
lock_acquire (in_lock)

out_lock := thread lock_object ()

lock_acquire (out_lock)

every 1 to xinput_zoo do {
put (my_locks, thread lock_object())
}

every ci := 1 to c_no do {

thread creature(ci, my_locks[ci], in_lock,

}
delay (0)

lock_release (in_lock)
lock_acquire (out_lock)

critical venue: idl := venue[l]
while meetings_left > 0 do {
lock_release (in_lock)
lock_acquire (out_lock)
critical venue: i1d2 := venuel[l]
if idl "= id2 then {

out_lock)

new_color := compl_dict[colors[idl] | |colors[id2]]

colors[idl] := new_color
colors[id2] new_color
met [1id1l] +:
met [1d2] +:=
}

else {
self met[idl] +:=1
met [1dl] +:= 1
}

meetings_left —-:= 1

if meetings_left > 0 then {
lock_release (my_locks[idl])
idl := id2
}

else{
report (input_zoo, met, self_met)

}

1
1

end

procedure chameneosiate (n)
check_complement ()
let_them_meet (n, ["blue", "red", "yellow"])
let_them_meet (n, ["blue", "red", "yellow",
"blue", "red", "yellow",
end

procedure run_chameneos (argv)

"red",
"red",

venue := mutex([-11])
creature_colors := ["blue", "red", "yellow"]
compl_dict := table(

"blueblue", complement ("blue",

35

"yellow",
"blue“H

"blue"),

"bluered",

complement ("blue",

"red"),

"blueyellow", complement ("blue", "yellow"),
"redblue", complement ("red", "blue"),
"redred", complement ("red", "red"),
"redyellow", complement ("red", "yellow"),
"yellowblue", complement ("yellow", "blue"),
"yellowred", complement ("yellow", "red"),
"yellowyellow", complement ("yellow", "yellow")

)
chameneosiate (integer (argv([1l]))
end

$ifdef MAIN
procedure main(argv)

output := &output
run_chameneos (argv)
end
Sendif

36

thread-ring.icn

The Computer Language Benchmarks Game
http://shootout.alioth.debian.org/
Translated from Antti Kervinen and
Tupteq’s Python program

H H o S

global main_lock, first_lock, n
procedure threadfun (number, my_lock, next_lock)
repeat {
critical my_lock: wait (my_lock)
if n > 0 then {
n —:=1
signal (next_lock)
}
else {
write (output, number)
signal (main_lock)

}
end

procedure run_threadring(argv)

n := argv[l]

main_lock := condvar ()

next_lock := first_lock := condvar ()

every number := 1 to 503 do {
my_lock := next_lock

next_lock if number < 503 then condvar() else first_lock
thread threadfun (number, my_lock, next_lock)
}
signal (first_lock)
critical main_lock: wait (main_lock)
end

$ifdef MAIN
procedure main (argv)

output &output
run_threadring (argv)
end
Sendif

37

binary-trees.icn

The Computer Language Benchmarks Game
http://shootout.alioth.debian.org/

Translated from Python code written by
Antoine Pitrou, Dominigque Wahli and
Daniel Nanz

H o o 3 I I W

link memlog
link pool

record nodes(a, b, c)
procedure make_tree (i, d)
if d > 0 then {

i2 =1 + 1
d -:=1
return nodes (i, make_tree(i2 - 1, d), make_tree(i2,

}
return nodes (i, &null, &null)
end

procedure check_tree (nodelst)

local i := nodelst([1l], 1 := nodelst[2], r :=
if /1 then
return i
else
return i1 + check_tree(l) - check_tree(r)
end

procedure make_check (i, d)
return (check_tree (make_tree(i, d)))
end

record ca(a,b)
record cb(a,b)
procedure get_argchunks (i, d)
local chunksize:= 5000, chunk := []
every k := 1 to i do {
put (chunk, cb(ca(k, d), ca(-k, d)))
if *chunk = chunksize then {
suspend chunk
chunk := []
}
}
if xchunk > 0 then
suspend chunk
end

procedure build_trees (d)
local i, cs

nodelst [3]

i =2 " (mmd - d)
cs :=0
every argchunk := !get_argchunks(i,d) do {
cs +:= make_check (argchunk[1l,1], argchunk[1l,2])
cs +:= make_check (argchunk[2,1], argchunk([2,2])
}
return (i*2 || "\t trees of depth " || d || "\t check:

end
global min_depth, max_depth, stretch_depth, mmd

procedure run_binarytrees (argv)

local wL := [], rL := []
min_depth := 4

max_depth := argv([1l]
stretch_depth := max_depth + 1

38

n

d))

cs

)

mmd := max_depth + min_depth

write (output, "stretch tree of depth ", stretch_depth,
"\t check: ", make_check (0, stretch_depth))

every d := min_depth to stretch_depth by 2 do

put (wL, d)
pool := Pool (xwL)
rL := pool.imap (build_trees, wL)
pool.kill ()
every write (output, !rL)
long_lived_tree := make_tree (0, max_depth)

write (output, "long lived tree of depth ", max_depth,
"\t check: ", check_tree(long_lived_tree))
end

$ifdef MAIN
procedure main (argv)

output := &output
run_binarytrees (argv)
end
Sendif

FHEFE A R A R R
Optional sizes of environment varialbe BLKSIZE
to reduce garbage collections

1GB
export "BLKSIZE=1073741824"

export "BLKSIZE=2147483648"

i

#

i

#

#

#

2GB
#

#

3GB

export "BLKSIZE=3221225472"
#
#

FHAFHEHH A AR A R R R R R

i
To potentially giving each thread block

region of their own

#

40MB block region

#pool := Pool («wL, 41943040)

400MB block region

#pool := Pool («wL, 419430400)

#1GB block region

FHEF R

39

	Introduction
	Modifications to the Existing Icon Benchmark Suite
	Additions to the Existing Suite
	Benchmark Game Results
	Future Work
	Conclusions

